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Abstract

A fundamental issue in annotation efforts
is to ensure that the same phenomena
within and across corpora are annotated
consistently. To date, there has not been
a clear and obvious way to ensure anno-
tation consistency of dependency corpora.
Here, we revisit the method of Boyd et
al. (2008) to flag inconsistencies in depen-
dency corpora, and evaluate it on three lan-
guages with varying degrees of morphol-
ogy (English, French, and Finnish UD v2).
We show that the method is very efficient
in finding errors in the annotations. We
also build an annotation tool, which we
will make available, that helps to stream-
line the manual annotation required by the
method.

1 Introduction

In every annotation effort, it is necessary to make
sure that the annotation guidelines are followed,
and crucially that similar phenomena do receive
a consistent analysis within and across corpora.
Given the recent success of the Universal De-
pendencies (UD) project1 which aims at build-
ing cross-linguistically consistent treebanks for
many languages and the rapid creation of 74 cor-
pora for 51 languages supposedly following the
UD scheme, investigating the quality of the de-
pendency annotations and improving their consis-
tency is, more than ever, of crucial importance.

While there has been a fair amount of work
to automatically detect part-of-speech inconsis-
tent annotations (i.a., Eskin (2000), van Halteren
(2000), Dickinson & Meurers (2003a)), most ap-
proaches to assess the consistency of dependency
annotations are based on heuristic patterns (i.a.,
De Smedt et al. (2016) who focus on multi-word

1http://universaldependencies.org

expressions in the UD v1 corpora (Nivre et al.,
2016)). There exists a variety of querying tools
allowing to search dependency treebanks, given
such heuristic patterns (i.a., SETS (Luotolahti et
al., 2015); Grew (Bonfante et al., 2011); PML
TreeQuery (Štěpánek and Pajas, 2010); ICARUS
(Gärtner et al., 2013)). Statistical methods, such as
the one of Ambati et al. (2011), are supplemented
with hand-written rules. While approaches based
on heuristic patterns work extremely well to look
for given constructions (e.g., clefts) or check that
specific guidelines are taken into account (e.g.,
auxiliary dependencies should not form a chain in
UD), such approaches are limited to finding what
has been defined a priori.

In this paper, we adapt the method proposed
by Boyd et al. (2008) to flag potential depen-
dency annotation inconsistencies, and evaluate it
on three of the UD v2 corpora (English, French
and Finnish). The original Boyd et al. method
finds pairs of words in identical context that vary
in their dependency relation. We show that this
method works fairly well in finding annotation er-
rors, within a given corpus. We further hypoth-
esize that using lemmas instead of word forms
would improve recall in finding annotation errors,
without a detrimental effect on precision. We
show that our intuition is valid for languages that
are not too morphologically-rich, like English and
French, but not for Finnish.

We also examine whether we can extend the
method by leveraging the availability of large
corpora which are automatically dependency-
annotated to identify more inconsistencies than
when restricting ourselves only to the given manu-
ally annotated corpus. We find that when based on
automatic rather than manual annotation, the pre-
cision drops but not excessively so, but the gain in
recall is rather moderate.

Finally, the Boyd et al. approach is semi-
automatic, flagging potential inconsistencies



Figure 1: Example of variation nuclei for phrase-
structure tree from (Boyd et al., 2008).

which require manual validation. To help stream-
line this manual validation process, we develop
a visualization and annotation tool for the task,
available to the UD community, with data for all
UD treebanks.2 Rather than a standalone tool
such as ICARUS (Thiele et al., 2014), we provide
an accessible browser-based interface.

2 Boyd et al. 2008: Variation nuclei

Boyd et al. (2008) extend, to dependency repre-
sentation, the concept of variation nuclei devel-
oped by Dickinson and Meurers (2003b; 2005)
for identifying inconsistent annotations in phrase-
structure trees. Variation nuclei are elements
which occur multiple times in a corpus with vary-
ing annotation. For phrase-structure trees, a vari-
ation nucleus is any n-gram for which bracketing
or labeling varies, with one shared word of context
on each side of the n-gram. Figure 1, from Boyd
et al. (2008), shows an example of a 5-gram, its
biggest jolt last month, which receives two differ-
ent analyses in the Penn TreeBank.

For dependency representation, the basic ele-
ments are dependencies, i.e. pairs of words linked
by a labeled dependency. Here variation nuclei
are then pairs of words which are linked by dif-
ferent relations. However flagging any pairs of
words linked by different relations would gener-
ate too many potential inconsistencies, most of
which might be genuine ambiguities and not an-
notation errors. To restrict the number of poten-
tial inconsistencies, Boyd et al. add context re-
strictions. Their “non-fringe heuristic” requires
the words in the nucleus to share the same con-
text (one word to the left and one word to the right
of the nucleus). Example (1) shows a variation

2http://www.universaldependencies.org/
fixud

nucleus in a dependency representation, extracted
from the UD English corpus, where the pairs of
words Here and examples are linked differently.
Boyd et al. also experimented with a “dependency
context heuristic” requiring the governors of the
dependency pairs to have the same incoming de-
pendency relation. They also considered the case
of pairs of words which are linked by a depen-
dency relation in some instances and not linked
by any relation in other instances, but required for
those cases that the internal context between the
two words be exactly the same.

(1) a. Here ’s two examples :

advmod

cop
nummod punct

b. Here are two examples : . . .
cop

nsubj

nummod

appos

punct

3 Extending to lemmas

Our goal in this paper is two-fold: evaluate the
Boyd et al. method on the UD data, and increase
recall of finding annotation errors without sacrific-
ing precision. So far we have restricted our evalu-
ation to words that are linked by different existing
dependency relations, evaluating the “non-fringe”
and “dependency context” heuristics. Boyd et al.
applied their method to words (tokens). We hy-
pothesized that to reduce data sparsity and thus
find more errors, we could use lemmas instead of
words, and contrary to Boyd et al., we do not re-
quire that the part-of-speech of the lemmas match.
Note that the Boyd et al. method is independent of
the dependency representation chosen.

4 Data

We evaluate our reimplementation and extension
of the Boyd et al. method on three different lan-
guages: English, French and Finnish. We chose
these three languages because they vary in their
degree of morphology, and are therefore good can-
didates to properly evaluate the impact of using
lemmas instead of words. We used the UD v2 cor-
pora of English, French and Finnish. Table 1 gives
the size of these corpora in terms of number of
sentences and tokens. For the purpose of finding
inconsistencies in the annotations, we collapse all
the data sets (train, development, and test) avail-
able into one corpus for each language.
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(c) Finnish (117 lemma pairs)

Figure 2: Number of lemma pairs (y-axis) displaying different numbers of potentially erroneous trees
(x-axis).

UD v2 # sentences # tokens

English 14,545 229,753
French 16,031 392,230
Finnish 13,581 181,138

Table 1: Size of the UD v2 English, French and
Finnish corpora.

5 Evaluation

The method retrieves 266 pairs of lemmas display-
ing inconsistencies for English, 474 for French
and 117 for Finnish, using the “non-fringe” heuris-
tic (i.e., the pairs need to share context: same
lemma to the left and same lemma to the right
of the lemmas in the dependency pair). Each pair
varies in the number of inconsistent trees they are
associated with. But most pairs contain two trees,
as can be seen in Figure 2 which shows the counts
of pairs (y-axis) for the different numbers of trees
they contain (x-axis).

For each language, to evaluate how many of the
inconsistencies flagged are indeed annotation er-
rors, we randomly sampled 100 of the pairs re-
trieved and annotated all the trees associated with
these pairs, nevertheless limiting to 10 trees per
dependency type.

5.1 Lemma-based approach

Table 2 gives the results. In the “non-fringe” col-
umn, we computed how many of the 100 pairs
do contain erroneous trees. Thus these results in-
dicate how precise the method is. Boyd et al.
propose an additional, more stringent heuristic of
“dependency context”. This heuristic requires the
word/lemma pairs to not only share the left/right
context, but also the incoming relation type. As
we did not implement this heuristic when select-

ing the trees for annotation, we are able to evalu-
ate its precision as well as its recall relative to the
pairs retrieved when using only the “non-fringe”
heuristic. Using the 100 pairs annotated in each
language as a gold-standard, we calculated the
precision and recall of the “dependency context”
heuristic by examining which pairs are left when
adding the further requirement of shared incoming
relation to the governor.

For the method used on lemmas, the results are
satisfying for both English and French, with a pre-
cision of 62% and 65%, respectively. However
the method is not precise enough for Finnish, with
only 19% of the pairs containing annotation errors.
The use of lemmas for Finnish loses too much
information: different inflections in Finnish can
have completely different roles in many cases, and
this leads to many false positives being retrieved.
A good example of this is relative clauses, where
the Finnish relativizer lemmas joka and mikä get
different syntactic functions depending on the case
inflection. For example, in the relative clauses
“joka (Case=Nom) tarvitsee” who needs, “jota
(Case=Par) tarvitsee” what is needed and “jossa
(Case=Ine) tarvitsee” where something is needed,
three different syntactic functions, “nsubj”, “obj”
and “obl” respectively, are correctly assigned for
the same lemma pair.

The more stringent heuristic of “dependency
context” leads to a loss in recall (especially for
French with only 47%) without a clear boost in
precision. These results are in line with the re-
sults from Boyd et al. who evaluated their method
on Czech (one portion of the Prague Dependency
Treebank, (Böhmová et al., 2003)), Swedish (Tal-
banken05, (Nivre et al., 2006)) and German (Tiger
Dependency Bank, (Forst et al., 2004)). For the
Czech data (38,482 sentences – 670,544 tokens),



LEMMAS WORDS

“Non-fringe” “Dependency context” “Non-fringe”
Precision (%) Precision (%) Recall (%) Precision (%) Recall (%)

English 62 76 66 72 79
French 65 64 47 76 73
Finnish 19 21 81 72 75

Table 2: Results of the Boyd et al. method on 100 pairs in each corpus for the “non-fringe” and “de-
pendency context” heuristics when using lemmas as well as for the “non-fringe” heuristic when using
wordforms. Recall is always reported relative to the “non-fringe” lemma-based method.

Boyd et al. obtained 58% precision on 354 pairs
retrieved, increasing precision slightly to 61%
when adding the more stringent heuristic, but with
a recall of 66%. For the Swedish data (11,431 sen-
tences – 197,123 tokens), 210 pairs were retrieved,
with a high precision of 92%. The more strin-
gent heuristic yielded a slight increase in precision
(95%) but an important drop in recall (48%). For
German (1,567 sentences – 29,373 tokens) how-
ever, due to the small corpus size, only 3 pairs
were retrieved, all containing annotation errors.

5.2 Wordform-based approach

Capitalizing on the fact that every identified pair of
words is also among the pairs of lemmas, we can
subset the manually annotated lemma pairs and
compute the precision of the method using word-
forms as well as its recall relative to the lemma-
based method. The results of the method based
on words (instead of lemmas) are shown in the
last columns of Table 2. For English and French,
we see a moderate gain in precision whereas for
Finnish we see a dramatic gain in precision, from
19% to 72%. The recall of the wordform-based
method is in the 70–80% range for all languages,
meaning that the gain in precision is offset by a
loss of 20–30% of identified annotation errors. As
the task is to find as many annotation errors as pos-
sible, the loss of 20–30% of identified annotation
errors might not be justified, especially for English
and French where it is not accompanied by a major
gain in precision.

5.3 Delexicalized approach

Seeing that for Finnish, new strategies need to be
explored, we also test a delexicalized version of
the method, whereby only pairs of morphologi-
cal features are considered, rather than wordforms
or lemmas, but constrained on the context lem-

mas. For instance, in Figure 3, instead of using
the wordform or lemma, we work at the level of
the morphological features: the elements in the
pairs share the same features, and the left and right
contexts have identical lemmas. For English and
French, initial inspection of the results revealed
a hopeless over-generation, but for Finnish this
method outperforms the lemma-based approach
both in precision and recall. While the lemma-
based method identifies 117 pairs with precision of
19%, the delexicalized version identifies 353 pairs
with precision of 25%. This shows that when ap-
plying the method to Finnish, the morphology is
of primary consideration, even above the lemmas
themselves. Nevertheless for Finnish, the more
useful method is the original Boyd et al., which
considers wordforms, given that it reaches a high
enough precision.

5.4 Analysis of the errors retrieved

We give here a few examples of the pairs retrieved
which accurately pointed to errors in the annota-
tions. In all examples, we bold the words that con-
stitute the word/lemma pairs. Examples in (2), (3),
(4), (5) and (6) display trees in which two very
different analyses have been given to the same
construction. Such trees indicate that some spe-
cific constructions in the corpus need to be sys-
tematically checked: for instance, (3) shows that
comparatives in the UD French corpus need to
be checked for consistency in their analysis, and
(4) shows that Fr. “ce qui” that which needs to be
checked across the board. Similarly (5) shows that
number constructions in the Finnish corpus are not
consistent in the choice of the head. Thus the
examples flagged are useful to write patterns to
check the annotations of some constructions that
we may not have been thinking of a priori. (6)
shows a case where there is a disagreement in the



suuria kaloja pienessä lammessa ja . . .
ADJ+Par+Pos+Plur NOUN+Par+Plur ADJ+Ine+Pos+Sing NOUN+Ine+Sing CCONJ

big fish in small in pond and . . .

amod
obl

amod cc

suurempia ongelmia pääoman hankinnassa ja . . .
ADJ+Par+Cmp+Plur NOUN+Par+Plur NOUN+Gen+Sing NOUN+Ine+Sing CCONJ

bigger problems of capital in gathering and . . .

amod
nmod

nmod:gobj cc

Figure 3: An example of an annotation error identified by the delexicalized method in the Finnish corpus.
Here a pair of words is identified sharing a lemma-based context (big, and) such that the first word is a
noun in plural partitive and the second word is a noun in singular inessive.

dependency type in identical phrase constructions.
As the “obl” relation type has only been intro-
duced in the recent version of the UD guidelines,
it may be more error prone at this point.

(2) a. this is what the thing is about

nsubj

cop

acl:relcl

cop
nsubj

b. This store is what Colorado is all about

nsubj
ccomp nsubj

cop

advmod

case

(3) a. . . . meilleur que le précédent .
better than the former

case

det

obl

b. . . . meilleur que la précédente .
better than the former

mark
det

advcl

(4) a. . . . ce qui n’ est guère élevé .
that which NEG is not high

acl:relcl
nsubj

b. . . . ce qui est peu élevé .
that which is little high

conj
nsubj

fixed

(5) a. . . . tuhansia euroja jäsenmaksuja
thousands of euros of subscriptions

nummod nmod

obj

b. . . . tuhansia euroja jäsenmaksuja
thousands of euros of subscriptions

nummod nmod

obj

(6) a. on yksi katsotuimpia tv-sarjoja
is one of the most watched tv series

cop amod
nmod

root

b. . . . on yksi pahimpia ongelmia
is one of the worst problems

cop amod
obl

root

Some errors are due to wrong attachments, such
as (7) in which able is wrongly attached to had
with a “ccomp” relation instead of being attached
to idea.

(7) We had a pretty good idea when we signed
the contract that ECS would not be able to
complete that by the contract start date, . . .

The total number of annotation errors identified
during the annotation of the 100 lemma pairs for
each of the three corpora is summarized in Table 3.
The annotation took a maximum of two hours per
language and was carried out by annotators well
versed in the task.

6 Extending with parsebank data

The Boyd et al. method is very useful to find anno-
tation errors when there are similar contexts within
the corpus. We examine whether we can take ad-
vantage of existing large parsebank data to find
more contexts in which analyses differ, and thus
hopefully catch more annotation errors in the UD
data. We used the CoNLL’17 Shared Task sup-
porting data (Ginter et al., 2017), comprising of up
to several billions of words of web-crawled data



Figure 4: Example of the annotation tool.

Erroneous Correct
Type Structure

English 63 13 223
French 56 45 241
Finnish 7 12 259

Table 3: The number of trees assessed as erro-
neous (incorrect relation type or incorrect struc-
ture), and the number of trees verified to be cor-
rect.

per UD language, parsed with the UDPipe 1.1 de-
pendency parser (Straka et al., 2016). For each of
the three UD corpora we analyze, we flag pairs if
they appear in the corresponding parsebank data
in the same context at least 5 times, but are a vari-
ation nucleus. Table 4 gives the number of trees
which were manually assessed as annotation er-
rors, as well as the percentage of trees which con-
tain annotation errors (out of 100 pairs randomly
sampled for French, all of them for English and
Finnish). It also indicates how many of the erro-
neous trees are already found based on the tree-
bank itself. The proportion of such erroneous trees
ranges from 30% to 40% depending on the lan-
guage, but this means that 60–70% of annotation
errors found based on the parsebank data are not
flagged by the Boyd et al. method, when operat-
ing only within the same corpus.

7 Annotation tool

The method retrieves pairs that display different
analyses. However the pairs retrieved need to be
checked manually: are they annotation errors or
genuine ambiguities? To facilitate the annotation,
we implemented a web-based tool which allows
the annotation of the flagged inconsistencies to
be carried out entirely in the browser in an intu-
itive manner. The tool is illustrated in Figure 4.
First, the annotators are presented with a list of
lemma pairs, sortable by various criteria. For each
pair, a link is provided leading to visualizations of
the trees involving the pair, which is highlighted
in every tree. The trees are grouped by depen-
dency relation, which very often results in con-
sistent groups where every tree is correct or ev-
ery tree is incorrect, thus streamlining the anno-
tation. For each tree, the annotator can mark the

# tree “Non-fringe” % in Boyd
errors Precision

English 54 41% 38%
French 74 57% 36%
Finnish 10 16% 30%

Table 4: Results using parsebank data and lem-
mas: the number of trees that were manually as-
sessed as annotation errors, the precision of the
method, and the percentage of the erroneous trees
which would be also found based on the treebank
itself.



tree as correct or incorrect for three separate rea-
sons (relation type, governor/dependent, or part-
of-speech), or the catch-all category other. The
choice is saved automatically, and retrieved in case
the page with the trees is reloaded or reopened. A
visual cue in the form of a green border is given to
assure the annotator that the choice was success-
fully saved.

8 Conclusion

We evaluated the Boyd et al. (2008) method for
finding annotation errors in dependency corpora
on three of the UD v2 datasets (English, French
and Finnish), and showed that this method per-
forms fairly well.

We tried to adapt the Boyd et al. method to
retrieve more errors, by working at the level of
lemmas instead of wordforms. While results
seem to indicate that this can work for languages
with no case marking, it is clearly failing for a
morphologically-rich language such as Finnish.

The parsebank-based method did not at present
result in a large increase in recall, likely in part
due to a too strict cut-off on the minimal num-
ber of parsebank instances needed in order to flag
a treebank relation as inconsistent, and in part
due to the noise in the automated parses of the
web data. The winning system of the CoNLL’17
Shared Task3 gains 8 percents in Labeled Attach-
ment Score (LAS) over the baseline system which
produced the parsebank analyses that we used,
giving hope that this winning parser will lead to
better results for the parsebank-based method.

We developed an easy and intuitive web inter-
face for manual verification of the identified in-
consistencies. Given our encouraging results on
the three UD treebanks, we make both the inter-
face and the automatically identified inconsisten-
cies available to the UD community for all of the
70+ UD treebanks. This will allow us to expand
the effort to the larger UD community and cover a
number of languages and treebanks. For this, we
will implement a light-weight user management so
that multiple annotations for a single tree can be
aggregated if necessary.

Our work is restricted to assessing the annota-
tion consistency within a given corpus. However,
moving forward, ensuring that similar construc-
tions across corpora and languages are given the

3http://universaldependencies.org/
conll17/results.html

same analysis will also need to be addressed.
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